The Crystal Structure of $\mathbf{3 , 3}{ }^{\prime}$-Trithiobis-(2,4-pentanedione)

By L. F.Power*
Veterans Administration Hospital, Pittsburgh, Pensylvania, U.S.A.
and R.D.G.Jones
Chemistry Department, James Cook University of North Queensland, Townsville, Queensland 4810, Australia

(Received 18 August 1969)

Abstract

The crystal structure of 3,3'-trithiobis-(2,4-pentanedione), $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{3}$, has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn and the unit cell contains four molecules and has dimensions $a=13 \cdot 12$ (3), $b=9 \cdot 35$ (2) and $c=11.03$ (3) \AA. The structure was solved by the heavy-atom method and refined by full-matrix least-squares to a final R index of 5.8% for 856 observed reflexions. Hydrogen atoms were located by a difference Fourier synthesis. The 2,4-pentanedione residue is planar and there is evidence for double-bond localization in it. The $\mathrm{O}(1) \cdots \mathrm{O}(2)$ distance is $2.46 \AA$, indicating a strong hydrogen bond. The $S(1)-S(2)$ bond distance is $2.083 \pm 0.006 \AA$ while $\mathrm{S}(2)-\mathrm{C}(3)$ is $1 \cdot 802 \pm 0.012 \AA$. The dihedral angle, $\mathrm{S}-\mathrm{S}-\mathrm{S} / \mathrm{S}-\mathrm{S}-\mathrm{C}$, is $73 \cdot 2^{\circ}$.

Introduction

Reaction of sulfur chlorides ($\mathrm{SCl}_{2}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$) with acetylacetone results in the formation of bis-(β-diketones) of the type shown in Fig. 1. On the basis of infrared and proton magnetic resonance spectra (Dewar, Ferguson, Hentschel, Wilkins \& Williams, 1964), the compounds for which $n=1,2$ have been shown to be enolized with the formation of an intramolecular hydrogen bond. The crystal structure analysis of the compound for which $n=3$ has been undertaken to determine the stereochemistry about the trisulfide group and the nature of the acetylacetone residue.

Experimental

3, ${ }^{\prime}$ - Trithiobis-(2,4-pentanedione) was prepared by allowing a solution of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and acetylacetone in CCl_{4} to evaporate to dryness at room temperature. The compound was purified by recrystallization from acetone and crystals, suitable for X-ray analysis, were grown from acetone.

* On leave from the James Cook University of North Queensland, Townsville, Queensland 4810, Australia.

Fig. 1. Bis-(β-diketones) with sulfur linkages.

The lattice constants were determined from zerolevel Weissenberg photographs, taken about each crystallographic axis with $\mathrm{Cu} K \alpha$ radiation. Density measurements were made by flotation in potassium iodide solutions.

Crystal data

3,3'-Trithiobis-(2,4-pentanedione)
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{3}$, m.p. $133-134^{\circ} \mathrm{C}$, M.W. 294-4;
Orthorhombic;
$a=13 \cdot 12 \pm 0.03, b=9.35 \pm 0.02, c=11.03 \pm 0.03 \AA ;$
$V=1353 \cdot 1 \AA^{3}$;
$D_{m}=1.49 \mathrm{~g} . \mathrm{cm}^{-3}, D_{c}=1.45 \mathrm{~g} . \mathrm{cm}^{-3} ;$
$Z=4, F(000)=616$;
$\mu=50 \cdot 4 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation;
Absent spectra, $0 k l$ when k is odd, $h 0 l$ when l is odd, $h k 0$ when $h+k$ is odd, ($h 00$ when h is odd, $0 k 0$ when k is odd, $00 l$ when l is odd);
Space group, Pbcn (No. 60, International Tables for X-ray Crystallography, 1969).

Intensity data were collected from equi-inclination Weissenberg photographs with the use of $\mathrm{Cu} K \alpha$ radiation and a multiple-film technique with visual intensity estimation against a set of timed exposures of a single reflexion. Eight layers on the c axis ($l=0$ to 7) and four layers on the a axis ($h=0$ to 3) for cross correlation were recorded. The crystal used measured approximately $0.2 \times 0.2 \times 0.2 \mathrm{~mm}$. The intensities were corrected for Lorentz and polarization factors. No absorption correction was applied. An overall scale factor and isotropic temperature factor were determined by the method of Wilson (1942).

Structure determination and refinement

For space group Pbcn, there are eight general posi-
tions in the unit cell. Since the density indicates four molecules of $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}_{3}$ per unit cell, each molecule must consist of two asymmetric units symmetrically disposed about a special position. Trisulfides do not generally have a centre of symmetry but a twofold axis is common (Dawson, Mathieson \& Robertson, 1948). The trisulfide group was assumed to be unbranched with the middle sulfur atom lying on a twofold axis, parallel to the b axis, at the special positions (4c) (International Tables for X-ray Crystallography, 1969).

A three-dimensional Patterson synthesis allowed the location of both sulfur atoms, one as expected on the twofold axis. Series of structure factor calculations and Fourier syntheses revealed the position of all nonhydrogen atoms. The R index* at this stage was 30.8%.

Block-diagonal least-squares refinement, \dagger with isotropic temperature factors assigned to each atom and unit weight for each reflexion, reduced R to $15 \cdot 1 \%$. Because $\mathrm{S}(1)$ has some symmetry-fixed parameters (Levy, 1956; Peterse \& Palm, 1966), none of its parameters were varied, due to a restriction imposed by the S.P.S. computer program used. Refinement was continued with anisotropic temperature factors for the atoms [$\mathrm{S}(1)$ parameters were fixed].

Full-matrix least-squares refinement, with anisotropic temperature factors of the form $\exp \left[-\left(h^{2} \beta_{11}\right.\right.$ $\left.\left.+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$, unit weight for each reflexion and anomalous dispersion correction for the sulfur atoms, including both real and imaginary parts (Δf^{\prime} and $\Delta f^{\prime \prime}$), reduced R to 8.8%. The parameters of $\mathrm{S}(1)$ which were not symmetry fixed were allowed to vary. A difference Fourier synthesis at this stage located all hydrogen atoms and two further cycles

$$
* R=\frac{\sum\left(| | F_{0}\left|-\left|F_{c}\right|\right)\right.}{\sum\left|F_{0}\right|} .
$$

\dagger Block-diagonal least-squares were calculated with the program of G.A. Mair for the IBM 1620 computer.

Full-matrix least squares, on an IBM 7090 computer, were calculated with ORFLS (Busing, Martin \& Levy, 1962).

Fourier syntheses were calculated with the program of R. Shiono for the IBM 1620 computer.
of refinement, with hydrogen atoms given the temperature factors of the atoms to which they were attached (only hydrogen positions were varied), gave a final R and weighted R of 5.8% and 6% respectively for observed reflexions. If unobserved reflexions were included, with $F_{o}=\frac{1}{2} F_{\min }$ for each layer, R was 7.3%

Scattering factors for sulfur, carbon and oxygen atoms were taken from the tables of Cromer \& Waber (1965), those for hydrogen atoms from the table of Stewart, Davidson \& Simpson (1965) while anomalous dispersion corrections for sulfur atoms, with $\mathrm{Cu} K \alpha$ radiation, were taken from International Tables for X-ray Crystallography(1962).

Discussion

Final values for the atomic coordinates are shown in Table 1 while temperature factors for the non-hydrogen atoms are listed in Table 2. Bond lengths and bond angles are shown in Tables 3 and 4 and in Fig. 2. A listing of the F_{o} and F_{c} values is shown in Table 5.

Table 1. Fractional coordinates with e.s.d.'s in parentheses

	x	y	z
S(2)	0.0061 (1)	$0 \cdot 1488$ (1)	0.0983 (1)
S(1)	0.0000	$0 \cdot 2818$ (2)	$0 \cdot 25$
C(1)	$0 \cdot 1906$ (4)	-0.0324 (6)	$0 \cdot 2029$ (7)
C(2)	$0 \cdot 2134$ (4)	0.0777 (5)	$0 \cdot 1042$ (6)
C(3)	$0 \cdot 1361$ (3)	$0 \cdot 1652$ (5)	$0 \cdot 0475$ (5)
C(4)	$0 \cdot 1586$ (4)	$0 \cdot 2640$ (6)	-0.0390 (5)
C(5)	0.0839 (4)	$0 \cdot 3583$ (7)	-0.1101 (7)
$\mathrm{O}(1)$	$0 \cdot 3055$ (3)	0.0972 (4)	0.0741 (4)
$\mathrm{O}(2)$	$0 \cdot 2541$ (3)	$0 \cdot 2784$ (5)	-0.0761 (4)
H(00)	0.287 (4)	$0 \cdot 198$ (6)	-0.016 (6)
H(11)	$0 \cdot 174$ (4)	0.057 (5)	$0 \cdot 275$ (5)
$\mathrm{H}(12)$	0.253 (4)	-0.089 (5)	$0 \cdot 217$ (5)
H(13)	$0 \cdot 135$ (4)	-0.092 (6)	$0 \cdot 183$ (6)
H(51)	0.066 (3)	0.465 (6)	-0.060 (5)
H(52)	0.019 (4)	$0 \cdot 293$ (5)	-0.131 (5)
H(53)	$0 \cdot 116$ (4)	$0 \cdot 398$ (6)	-0.196 (5)

Hydrogen atoms are labelled according to the number of the carbon atom to which they are bonded. $\mathrm{H}(00)$ is the enol hydrogen.

Fig. 2. Bọnd lengths and bọnd angles for 3,3'-trịthịiobis-(2,4-pentanedione).

Table 2. Anisotropic temperature factors with e.s.d.'s in parentheses

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{~S}(2)$	$0.0027(5)$	$0.0140(2)$	$0.0076(2)$	$-0.0013(1)$	$0.0002(1)$	$-0.0008(1)$
$\mathrm{S}(1)$	$0.0046(1)$	$0.0086(2)$	$0.0098(2)$	0.0	$0.0021(1)$	0.0
$\mathrm{C}(1)$	$0.0053(3)$	$0.0072(7)$	$0.0131(9)$	$0.0005(4)$	$-0.0014(4)$	$0.0011(6)$
$\mathrm{C}(2)$	$0.0043(3)$	$0.0076(6)$	$0.0084(7)$	$0.0006(3)$	$-0.0001(3)$	$-0.0024(5)$
$\mathrm{C}(3)$	$0.0030(2)$	$0.0107(7)$	$0.0053(6)$	$-0.0010(3)$	$-0.0000(3)$	$-0.0021(5)$
$\mathrm{C}(4)$	$0.0041(3)$	$0.0109(7)$	$0.0045(6)$	$-0.0003(4)$	$-0.0003(3)$	$-0.0008(5)$
$\mathrm{C}(5)$	$0.0043(3)$	$0.0137(9)$	$0.0108(9)$	$-0.0004(5)$	$-0.0011(4)$	$0.0024(7)$
$\mathrm{O}(1)$	$0.0037(2)$	$0.0149(6)$	$0.0085(5)$	$0.0017(3)$	$0.0012(2)$	$-0.0001(4)$
$\mathrm{O}(2)$	$0.0035(2)$	$0.0129(6)$	$0.0118(5)$	$-0.0008(3)$	$0.0020(3)$	$0.0013(4)$

Table 3. Bond lengths

	Distance	E.s.d.
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.083 \AA$	$0.006 \AA$
$\mathrm{~S}(2)-\mathrm{C}(3)$	1.033	0.012
$\mathrm{C}(1)-\mathrm{C}(2)$	1.527	0.020
$\mathrm{C}(2)-\mathrm{C}(3)$	1.444	0.017
$\mathrm{C}(3)-\mathrm{C}(4)$	1.360	0.017
$\mathrm{C}(4)-\mathrm{C}(5)$	1.533	0.020
$\mathrm{C}(2)-\mathrm{O}(1)$	1.267	0.017
$\mathrm{C}(4)-\mathrm{O}(2)$	1.325	0.017
$\mathrm{O}(1)-\mathrm{O}(2)$	2.461	0.015
$\mathrm{O}(1)-\mathrm{H}(00)$	1.39	
$\mathrm{O}(2)-\mathrm{H}(00)$	1.09	
$\mathrm{C}(1)-\mathrm{H}(11)$	1.17	
$\mathrm{C}(1)-\mathrm{H}(12)$	0.99	
$\mathrm{C}(1)-\mathrm{H}(13)$	0.95	
$\mathrm{C}(5)-\mathrm{H}(15)$	1.16	
$\mathrm{C}(5)-\mathrm{H}(25)$	1.07	
$\mathrm{C}(5)-\mathrm{H}(35)$	1.10	

Table 4. Bond angles

	Angle	E.s.d.
$\mathrm{S}(2)-\mathrm{S}(1)-\mathrm{S}(2)$	$106 \cdot 7^{\circ}$	$0 \cdot 2^{\circ}$
$\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}(3)$	$103 \cdot 6$	$0 \cdot 2$
$\mathrm{~S}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$118 \cdot 8$	0.4
$\mathrm{~S}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118 \cdot 8$	$0 \cdot 4$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123 \cdot 5$	0.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$122 \cdot 4$	0.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$127 \cdot 5$	0.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$118 \cdot 0$	0.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$118 \cdot 4$	0.5
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{O}(2)$	$113 \cdot 0$	0.5
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	$119 \cdot 3$	$0 \cdot 5$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{H}(00)$	$97 \cdot 0$	
$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{H}(00)$	$97 \cdot 0$	
$\mathrm{O}(1)-\mathrm{H}(00)-\mathrm{O}(2)$	$165 \cdot 4$	

The c-axis projection (Fig. 3) shows that the configuration of the acetylacetone residues is trans with respect to the trisulfide grouping. Abrahams (1956) has postulated that such a configuration results if the dihedral angle at the sulfur group is less than 90°. For this compound, $\mathrm{S}-\mathrm{S}-\mathrm{S} / \mathrm{S}-\mathrm{S}-\mathrm{C}$ is $73 \cdot 2^{\circ}$.

The $S(1)-S(2)$ bond length is the value for a single bond (Abrahams, 1956). However, the bond is longer than that expected for a dihedral angle of $73 \cdot 2^{\circ}$ (Hordvik, 1966), for which a value of $2.05 \AA$ is anticipated. The S-S-S and $\mathrm{S}(1)-\mathrm{S}(2)-\mathrm{C}(3)$ bond angles and the $\mathrm{S}(2)-\mathrm{C}(3)$ bond length are within the accepted range (Abrahams, 1956).

For the acetylacetone residue, a least-squares plane has been calculated. The equation to this plane is

$$
0 \cdot 1126 X+0.7047 Y+0.7004 Z=1.645
$$

Table 5. Observed and calculated structure factors
The first column contains the running index h, the second $F_{o}(\times 10)$, the third $F_{c}(\times 10)$, the fourth $A_{c}(\times 10)$ and the fifth $B_{c}(\times 10)$ (due to anomalous dispersion). Unobserved reflexions are shown by *.

Deviations of atoms from this plane are shown in Table 6. In the acetylacetone group, $\mathrm{C}(2)-\mathrm{O}(1)$ is near the value for a carbon-oxygen double bond (1.23 \AA)
and $\mathrm{C}(4)-\mathrm{O}(2)$ is intermediate in length between that for a double and that for a single bond ($1.43 \AA$). A similar bond length relationship exists between $\mathrm{C}(4)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{C}(3)$. From these relationships, it is evident that double-bond localization exists in the enolized ring. Similar results were obtained for dibenzoylmethane (Williams, 1966) and bis- m-chlorobenzoyl)methane (Engebretson \& Rundle, 1964). Consistent with this picture of the enol ring, the enol hydrogen $\mathrm{H}(00)$, is attached to $\mathrm{O}(2)$. The $\mathrm{O}(2)-\mathrm{H}(00)$ and $\mathrm{O}(1) \cdots \mathrm{H}(00)$ distances of 1.09 and $1.39 \AA$ seem to be significantly different. The $\mathrm{O}(1)-\mathrm{H}(00)-\mathrm{O}(2)$ bond angle is nearly linear, $165 \cdot 4^{\circ}$.

Table 6. Deviation of atoms from least-squares plane

	Distance
C(1)	$-0.0108 \AA$
C(2)	-0.0132
C(3)	0.0111
C(4)	0.0272
C(5)	-0.0102
O(1)	0.0187
$\mathrm{O}(2)$	-0.0227
$\mathrm{~S}(2)$	0.1029^{*}
$\mathrm{H}(00)$	-0.0358^{*}

* Atom not included in least-squares plane calculation.

A neutron structure determination of this compound currently refined to an R index of 0.068% produced bond lengths $\mathrm{O}(2)-\mathrm{H}(00)$ and $\mathrm{O}(1) \cdots \mathrm{H}(00)$ of $1 \cdot 17(2)$ and $1.39(2)$ with fractional coordinates of $\mathrm{H}(00)$ of $0.298(1), 0.203(2)$ and $-0.012(1)$ agreeing well with those shown in Table 1.

The $\mathrm{O}(1) \cdots \mathrm{O}(2)$ contact is short $(2 \cdot 461 \AA)$. This value is comparable with values found for other enolized β-diketones. In dibenzoylmethane, bis- $(m$-chlorobenzoyl)methane and bis-(m-bromobenzoyl)methane (Williams, Dumke \& Rundle, 1962), the values are $2 \cdot 468,2.475$ and $2.464 \AA$ respectively. Formation of such a short oxygen-oxygen contact is due to the steric effect of S(2). Pauling (1960) gives the van der Waals approach of carbon to sulfur as $3.85 \AA$. For this compound $\mathrm{S}(2) \cdots \mathrm{C}(1)$ and $\mathrm{S}(2) \cdots \mathrm{C}(5)$ are $3 \cdot 17$ and $3 \cdot 18$ \AA, resulting in strain in the acetylacetone residue. Relief of some of this strain is evidenced by the large $C(5)-C(4)-C(3)$ and $C(1)-C(2)-C(3)$ bond angles, the short $\mathrm{O}(1) \cdots \mathrm{O}(2)$ contact and the larger β_{33} for $\mathrm{O}(1)$, $O(2), C(1), C(5)\left(\beta_{33}\right.$ is nearly perpendicualr to the plane of acetylacetone). The interposition of a hydrogen between $\mathrm{O}(1)$ and $\mathrm{O}(2)$ reduces the coulombic repulsion, a result of the close approach of the oxygen atoms.

The closest non-bonded contact of two sulfur atoms is $3.53 \AA$ which is less than the value of Pauling. However similar van der Waals contacts have been recorded for $2,2^{\prime}$-di-iododiethyl trisulfide (Donohue, 1950) and 2-thiohydantoin (Walker, Folting \& Merritt, 1969).

A neutron structure determination of this compound is being undertaken to verify the evidence for doublebond localization and the position of $\mathrm{H}(00)$.

Fig.3. c axis projection of $3,3^{\prime}$-trithiobis-(2,4-pentanedione).

The authors would like to thank Dr A. McL. Mathieson, Division of Chemical Physics, C.S.I.R.O., Melbourne, for making available his X-ray diffraction equipment, and Dr M. Sax of the Veterans Administration Hospital, Pittsburgh, Pennsylvania for use of computing facilities in the final stage of refinement. One of us (RDGJ) was the recipient of a Commonwealth Post-graduate Award for the duration of the project.

References

Abrahams, S. C. (1965). Quart. Rev. 10, 407.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORNL Report TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Dawson, I. M., Mathieson, A. McL. \& Robertson, J. M. (1948). J. Chem. Soc. p. 322.

Dewar, D. H., Ferguson, J. E., Hentschel, P. R. Wilkins, C. J. \& Williams, P. P. (1964). J. Chem. Soc. p. 688.

Donohue, J. (1950). J. Amer. Chem. Soc. 72, 2701.
Engebretson, G. R. \& Rundle, R. E. (1964). J. Amer. Chem. Soc. 86, 574.
Hordvik, A. (1966). Acta Chem. Scand. 20, 1885.
International Tables for X-ray Crystallography (1969). Vol. I. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Levy, H. A. (1956). Acta Cryst. 9, 679.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
Peterse, W. J. A. M. \& Palm, J. H. (1966). Acta Cryst. 20, 147.
Stewart, R. F., Davidson, F. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Walker, L. A., Folting, K. \& Merritt, L. L. Jr (1969). Acta Cryst. B25, 88.
Williams, D. E. (1966). Acta Cryst. 21, 340.
Williams, D. E., Dumke, W. L. \& Rundle, R. E. (1962). Acta Cryst. 15, 627.
WILSon, A. J. C. (1942). Nature, Lond. 150, 152.

